The Descriptive Set Theory of C*-algebra Invariants
نویسندگان
چکیده
منابع مشابه
The descriptive set theory of C ∗ - algebra invariants
Ilijas Farah, Andrew Toms and Asger Törnquist (Appendix with Caleb Eckhardt) 1 Department of Mathematics and Statistics, York University, 4700 Keele Street, North York, Ontario, Canada, M3J 1P3, and Matematicki Institut, Kneza Mihaila 34, Belgrade, Serbia ([email protected]) and 2 Department of Mathematics, Purdue University, 150 N. University St., West Lafayette, IN 47902, USA (atoms@pu...
متن کاملDescriptive Set Theory Problem Set
Prove that any strictly monotone sequence (Uα)α<γ of open subsets of X has countable length, i.e. γ is countable. Hint: Use the same idea as in the proof of (a). (c) Show that every monotone sequence (Uα)α<ω1 open subsets of X eventually stabilizes, i.e. there is γ < ω1 such that for all α < ω1 with α ≥ γ, we have Uα = Uγ. Hint: Use the regularity of ω1. (d) Conclude that parts (a), (b) and (c)...
متن کاملSome descriptive set theory
Definition 1.1. Let (X, τ) be a topological space. A subset D ⊆ X is called dense if D ∩O 6= ∅ for every nonempty open set O ⊆ X. X is called separable if X has a countable dense subset. X is called metrizable if there is a metric d on X such that the topology τ is the same as the topology induced by the metric. The metric is called complete if every Cauchy sequence converges in X. Finally, X i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Mathematics Research Notices
سال: 2012
ISSN: 1687-0247,1073-7928
DOI: 10.1093/imrn/rns206